e-ISSN: 2343-6727

DOI: https://doi.org/10.47881/487.967x

Received: December 7, 2024 Accepted: September 10, 2025

Agricultural Technology Adoption in Ghana: Improved Tomato Seed Variety Adoption in Perspective

Adinan Bahahudeen Shafiwu

University for Development Studies
Department of Agricultural and Food Economics
shafiwu@uds.edu.gh

ABSTRACT

This study investigates the factors that influence farmers' adoption of Improved Tomatoes Seed Variety (ITSV) and how they affect farmers' production efficiency. With the help of multi-stage sampling procedure, a total of 508 farmers were chosen for interviews from three agroecological zones in Ghana. The factors influencing the adoption of ITSV were assessed using a multinomial logit (ML), while the effect and evaluation, validation and accounting for selectivity bias were carried-out using the stochastic metafrontier (SMF) models, propensity score-matching (PSM) technique, Inverse Probability Weight (IPW), and Augmented Inverse Probability Weight (AIPW). The results of the ML model indicated that farmers were more likely to select ITSV over the local variety if they were male, resided in the Forest Savannah Transitional Zone (FSTZ), were relatively wealthy and benefited from financing, and thought that improved varieties increased yields. In particular, the mean technical efficiency (TE) of farmers who adopted Pectomer, Pectomer and Power-Roma was 90.9% and 93.1%, respectively, compared to 86.2% and 88.8% if they had not adopted; this suggests that adopters are more efficient than those who did not adopt. Land, seed, insecticide, and tractor services positively influenced tomato production among adopters of the ITSV. The study suggests that using qualified extension agents and giving farmers credit could increase the adoption of improved tomato varieties by tomato farmers. Hence, this study advocates for government through the Ministry of Food and Agriculture (MoFA) to provide more capacity training to extension officer in order for them to effectively deliver their mandate.

Keywords: Adoption, Tomato seeds, Production Efficiency, Selectivity bias, Agro-ecological Zones

Introduction

The tomato industry contributes significantly to most West African farmers' nutritional status and livelihoods in the rural and peri-urban areas (Nnaemeka, 2024). In Ghana, it contributes significantly to the income of small-scale farmers in the savanna and forest transition zones and mostly seen as an indispensable ingredient found across every region and used in the preparation of dishes such as soups, sauces

and salads (Shafiwu, et al. 2022). Its production has increased over the years to meet the growing demand. Tomato production increased from 196,991 tons in 2000 to 381,015 tons (see Figure 1.1). Production was stable in the early 2000s until 2005 when the country reported a sharp decline in production from about 100,000 tons per year to around 50,000 tons per year. The variations in production were primarily due to changes in cultivated land

rather than output. Output grew virtually exponentially between 2008 and 2018, as shown in Figure 1.1.

Despite the increase in tomato production, the national demand for tomatoes has long outstripped domestic supply, a situation imports that attracts large neighbouring countries (Melomey et al., 2019). In 2017, for instance, some 75,000 tonnes of tomatoes were imported to meet domestic demand. Asharani attributes the shortages in supply to poor yields, which range from 63,500 kg/Ha to 65000 kg/Ha on average. Inefficient use of resources in agricultural production and a lack of acceptance of modern agricultural technologies, such as crop varieties, are contributing factors to low agricultural productivity (Owusu, 2016). The main causes of the low productivity of tomatoes and rice are the over-reliance on rain-fed agriculture systems, as well as the low adoption of farm inputs and better technology (Abdulai et al., 2018; Bidzakin et al., 2018; Mabe, 2018., Ragasa et al. 2013). Specifically, the use of fertilizer and seeds nowadays is still less than is advised. According to reports, 90% of African farmers produce their crops using native seeds (McMichael, 2013). More than half of Ghanaian farmers, for example, produce their crops using native seeds, according to (Shafiwu et al. 2022).

Low-quality, locally grown seed varieties reduce productivity and tomato quality, which impacts tomato prices (Oladovin, 2024). Despite the crop's many advantages, most poor nations—especially those in Africa—face numerous obstacles while trying to cultivate it, making its production unprofitable. To increase tomato productivity, farmers will need to adopt new technology in addition to changing various institutions, such as the land tenure credit provision systems, input, and (Karuku, et al.2017). Because of the inefficiencies these nations' manufacturing efficiency processes, measurement is a topic of ongoing,

substantial research (Betty, 2005). For example, some research has focused on growing Ghana's tomato production (Shafiwu, et al. 2022)) with Some (Ahmed and Anang, 2019; Anang et al., 2019) who also, uncovered the factors influencing tomato producers' efficiency performances.

Furthermore, there is a dearth of empirical data about the effect of increased technology adoption on tomato farmers' production efficiency, despite substantial body of research exploring the variables influencing farmers' productivity in Ghana, this study looks into how farmers' efficiency production in particular Ghanaian ecological zones is affected by the use of enhanced tomato seed varieties. The present investigation aims to explore the factors that influence farmers' adoption of enhanced tomato seed varieties and to calculate the impact of these varieties on tomato farmers' production efficiency within certain agro-ecological zones in Ghana.

By giving policy makers advice on the variables influencing farmers' adoption of improved agricultural technologies like ITSV, this study advances the national enhanced technology dissemination goal. Although there is consensus on the positive welfare effects of technology adoption on crop producing households, the literature is silent on tomato farmers. Thus, findings objective from my second communicate empirical evidence of the potential of adoption of ITSVs to enhance farm household production efficiency and welfare. The rest of this paper is structured as follows. Section 2 outlines the materials Section 3 presents a and methods. discussion of the results. Finally, section 4 highlights the study conclusions proffers policy recommendations.

Ghana's tomato industry is neither able to reach its full potential in terms of yields and production, nor in terms of assisting processing enterprises, as compared to other nations. Consequently, the industry has not succeeded in raising the standard of living for the households engaged in its manufacturing and distribution (Anang et al., 2013). Despite substantial government investments in the tomato industry, including the construction of multiple processing facilities, farmers prefer to grow local varieties with high water content, high seed counts, poor color, and low brix rather than the quality and quantity of tomatoes required for commercial processing. Most tomato growers are unable to sell their produce due to the seasonality of production, high perishability, limited market access, and competition from imports; as a result, the tomatoes are allowed to decay on their fields (Ghana veg Report, 2016). Conversely, growers that continue to reap financial rewards from growing tomatoes instead of other crops do so because they can produce larger yields of tomatoes (Hilmi, 2022). High input prices

per unit are one of the main issues facing Ghanaian tomato growers, according to Shafiwu, (2021). Therefore, for Ghanaian agro-tomato processing to be competitive, a lower average production cost per unit is required. At low but fixed prices provided by processors, farmers can profitably sell their tomatoes (Shafiwu, et al 2022)

In Ghana, tomatoes are both a food and a cash crop. Increasing competitiveness of tomato production can enhance economic growth in Ghana (Otokunor, et al.2023) Despite its potential, tomato production continues to decline, while imports of tomato paste surge (Robinson *et al.*, 2012). The country is ranked as the second largest importer in Africa with about 7,000 Mt of fresh tomatoes and 27,000 Mt of processed tomatoes imported annually from the neighboring Burkina Faso and European market (MoFA, 2017).

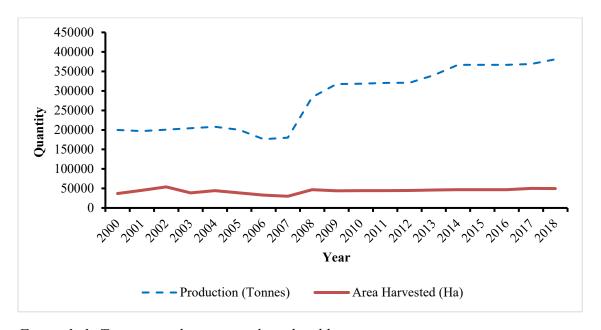


Figure 1. 1: Tomato production trends and yields

Source: FAOSTAT, 2018

Materials and Methods Study location and sampling

The study was cross-sectional and used Primary data sourced from farmers using a semi-structured questionnaire. A total of 508 tomato farmers were selected through a multi-stage sampling technique. Three agro-ecological zones: Guinea Savannah, Forest Savannah Transition, and the Coastal Savannah zones of Ghana, were selected based on their high tomato production (IFPRI, 2013). First, municipality was selected from each zone using the purposive sampling technique, they were, Sagnarigu, Techiman and Kesena Nankana (Navrongo) municipality being, the Northern, Bono East and Upper East regions of Ghana. In the second stage, a stratified sampling technique employed to select communities from each selected municipality. In the third stage, a proportion-to-size sampling approach was employed to select thirty or twenty (30/20) farmers from each community based on the population tomato farming of community. Finally, a simple random sampling technique was employed to select the individual respondents from the households who are into tomato farming. The Slovin's formula as used by Rivera (2007) was employed to determine the sample size for this study. It is expressed as:

$$n = \frac{N}{(1 + Ne^2)} \tag{1}$$

where n is the sample of farmers to be included in the study, N is the population of potential farmers in Ghana which MoFA (2016) estimates as 2,503,006; and e is the margin of error or precision level. 4.4% was my chosen margin of error. Using the formula, 516 farmers were found in all, all of whom had the same amount of land. After gathering information from the 516 responders, it was cleaned up to produce a list of 508 farmers. In the analysis, I used methods. quantitative Stata software (version 16) was used for quantitative analyses, such as maximum likelihood model estimation and respondent descriptive statistics.

Conceptual Framework of the study

The conceptual framework for the study is presented in Fig 2. A conceptual framework tries to explain the linkages that exist among various concepts or variables used in the study. It starts from an inductive viewpoint to a deductive or from a simple to complex model below.

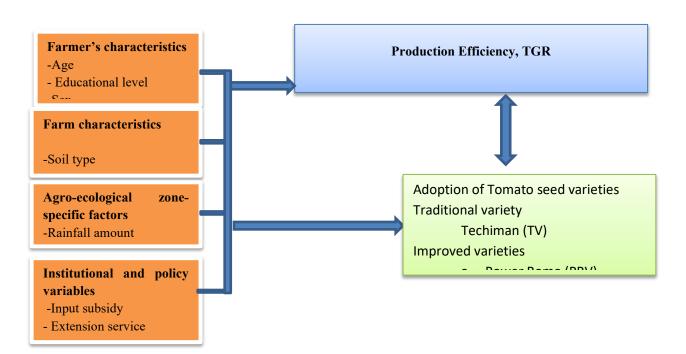


Figure 2. Conceptual Framework of the Study

The conceptual framework shown in Figure is adapted from the works of Kiatpathomchai (2008)and Alemaw (2014). Alemaw (2014) showed how farmer specific characteristics, institutional and policy factors and psychological factors affect the adoption of a new maize technology (improved maize variety). Also, the conceptual framework designed and used by Kiatpathomchai (2008) examined the effects of farm household characteristics and rice farming practices on efficiency. This study combined the conceptual framework of Kiatpathomchai (2008) and Alemaw (2014) and added agroecological zone-specific characteristics which were termed as environmental factors by Shiferaw et al. (2014) in order to take care of heterogeneity owing to the adoption of different ITSV by the various agro-ecological zones. The study also added the effect of technology adoption on production efficiency.

Three main tomato seed varieties were predetermined for the study, namely; Techiman (TMSV), Power Roma (PRV) and Pectomer (PV). While TMSV is the traditional variety, Power Roma (PRSV) and Pectomer (PSV) are the modern varieties. Literature on adoption (e.g., Feder, Just, & Zilberman, 1985; Kassie, Jaleta, Shiferaw, Mmbando, & Mekuria, 2013; Kassie, Teklewold, & Jaleta, 2015; Makate, Makate, & Mango, 2017; Manda, Alene, Gardebroek, Kassie, & Tembo, 2016) often argue that farmers' decisions regarding farm technologies are influenced by socio-demographics and economic characteristics. The current study follows the same line of argument that farmers' adoption of ITSV will depend on sociodemographics and economic characteristics including age, sex, occupation, household size, education, income, among others. Beyond the socio-demographic characteristics, economic a farmer's decision to adopt a particular ITSV could also be influenced by farm-specific factors, institutional, policy variables of the country

and the agro-ecological/location factors (Binswanger & Rosenzweig, 1986; Binswanger & Pingali, 1988; Erenstein, 2006). In this study, these factors are captured using farm size, soil type, cropping system, irrigation, input subsidy, extension service, market access, rainfall and temperature, among others. The relationship between these variables and adoption is shown in Figure 2 above.

Theoretical Frameworks

This study is based on the random utility theory, which is founded on utility maximization. It is adopted to explain farmers' adoption of ITSV. The decision to adopt in agriculture helps farmers and consumers estimate to their maximization or utility maximization. A farmer producing tomatoes has an option of being a net adopter of some improved variety of seeds. This involves making decisions on the assumption that, ranks can be made for the utility a farmer derives from adopting a particular seed variety.

The rational choice theory suggests that when an individual or economic agent is faced with a number of choices, he/she will prefer a choice that maximizes his/her expected utility of wealth. By so doing, the theory assumes that rational behavior governs decisions of an individual or economic agent. Thus in accordance with the theory, an individual or economic agent i will choose any package j over any alternative package m if $U_{ii}(\pi) > U_{im}(\pi)$ or $\Delta U_{im} = U_{ij}(\pi) - U_{im}(\pi) > 0$ and $m \neq j$ in all cases. This is under the assumption that the individual or economic agents are risk neutral and take into account the net benefit derived from such practice during the decision-making process. However, the benefit or utility of wealth $U_{ii}^*(\pi)$ derived from choosing package j is a latent variable and as a researcher one cannot directly observe the parameters of such package. The econometric inference problem then becomes a question of parameterizing the equation that defines the net utility of wealth. According to Green (2002), although the preferences of the individual or the agent are not known to the researcher, his/her characteristics and as well as the attributes of the program (adoption of ITSV in the case of this study), X are observed during the survey. Green (2002) further pointed out that such characteristics can be used to (X) determine the choice of the individual in the following fashion:

$$U_{ii}^* = \delta_i X_i + \varepsilon_{ii}$$
 (2)

Assuming ITSV is the index variable for each of the unobserved preferences, equation (2) translates into the observed binary outcome equation for each choice as follows:

$$TV = \begin{cases} 1 & if \quad U_{i1}^*(\pi) > \max_{m \neq j} [U_{im}^*(\pi)] \\ \vdots & \vdots & \vdots \\ if \quad U_{ij}^*(\pi) > \max_{m \neq j} [U_{im}^*(\pi)] \end{cases}$$

or
$$\eta_{i1} < 0$$
 for all $m \neq j$ (3)

or $\eta_{ij} < 0$ Where $\eta_{ij} = \max_{m \neq j} [U_{im}^*(\pi) - U_{ij}^*(\pi)] < 0$ in (30.0) as indicated by Bourguignon et al. (2007); further, equation (3) implies that the decision maker will choose package j to maximize his/her expected utility of wealth if package j provides greater expected utility of wealth than any other that package $m \neq j$, $\eta_{ij} = \max_{m \neq j} [U_{ij}^*(\pi) - U_{im}^*(\pi)] > 0.$ Giving that ε in equation (3) is identically and distributed, independently Gumbel (1973)argued that McFadden probability that the decision maker will choose package *j* can be specified by a Logit model which is multinomial

discussed in the subsequent section.

Analytical Framework

Multinomial Logit

socio-economic The determinants influencing tomato growers' decisions to adopt a certain tomato seed variety (TSV) were identified and estimated using the multinomial logit. Tomato seed variety in were predetermined this study categorise into three categories. These categories were Adoptors of Pectomer seed variety (PSV), Power Roma (PRSV) and adoptors of both Pectomer and the Power Roma varieties (PPRSV) jointly against the traditional variety ("Techiman"). categorization was mutual exclusive and was based on preference, hence warranted the use of multinomial logit model. A logical buyer or producer looking to maximize output or profit would select one of the several enhanced tomato cultivars that provide the highest yield. The resulting utility can be broken down into components that are noticed and those that are not (Greene, 2003). It is expressed as:

$$U_{ij}(X_{ij};Z_{ij}) = V_{j}(X_{ij};\beta) + \varepsilon$$
 (4)

Where: $U_{ij}(X_{ij}; Z_{ij})$ is the utility of i^{th} individual choosing alternative j while $;V_{ij}(X_{ij};Z_{ij})$ denotes the deterministic component of the utility.

The deterministic portion is modeled using a multinomial logit. In accordance with Greene (2003), Cameron and Trivedi (2005), Mpuga (2008), and Eneyew (2012), the multinomial logit model's conditional probability is given as follows:

$$prob(Y_i = j / X_i) \frac{\exp(x_i \beta_j)}{\sum_{i=0}^k \exp(x_i \beta_j)}$$
 (5)

Where j=1, 2, ..., k. empirically, are the categories of ITSV. The base category is used to compare other choices by restricting the base category's parameters to all zero ($\beta = 0$). The estimation of the multinomial logit is by maximum likelihood method. The log-likelihood function is expressed

$$\ln L = \sum_{i=1}^{n} \sum_{j=1}^{k} d_{ij} \log(p_{ij})$$
 (6)

The multinomial logit is interpreted in terms of odds. The odd of outcome m versus outcome n given U shown by $wm/n(U_i)$ is expressed as:

$$wm/n(X_i) = \frac{pro(y_i = m/X_i)}{pro(y_i = n/X_i)} = \frac{\ell(x, \beta_m)}{\ell(x, \beta_n)}$$
(7)

Simplifying equation (5) gives

$$wm/n(X) = \ell(x, \beta_m - x, \beta_n) = \ell[x, (\beta_m - \beta_n)]$$
 (8)

Taking the natural logarithm of equation [8], the multinomial logit is expressed as linear in logit:

$$\ln[(wm/n(X_i)] = X_i(\beta_m - \beta_n)$$
(9)

Equation (7) gives the effect of X on the logit of outcome m against outcome n. Also, the partial derivatives of the equation [7.0] give the marginal effects expressed as:

$$\frac{\partial \ln[wm/n(X_i)]}{\partial X_k} = \frac{\partial X_i(\beta_m - \beta_n)}{\partial X_k} = \beta_{km} - \beta_{kn}$$
(10)

Where $\beta_{km} - \beta_{kn}$ means, for a unit change in x_K the logit of outcome m versus outcome n is expected to change by $\beta_{km} - \beta_{kn}$ units.

The New Two-Step Stochastic Meta-Frontier Models

The proposed new two-step stochastic meta-frontier by Huang et al. (2014) is the current estimation method for production efficiency analysis. Both the group specific stochastic frontier and the stochastic meta-frontier regressions are used. The group specific stochastic frontier regression is specified as:

$$y_{i}^{k} = f(x_{i}, \beta_{i}^{k}) \ell^{V_{i}^{k} - U_{i}^{k}} = \ell^{x \beta_{i}^{k} + V_{i}^{k} - U_{i}^{k}}$$
(11)

Where y^k is group k output, x is the

vector of inputs, v_i^k and u_i^k are the error

terms for firms in group k, β^k is a vector

of unknown parameters for group k firms.

From the above model (11), the group specific stochastic frontier will be first estimated and the estimated parameters and error terms pooled together for the estimation of the stochastic meta-frontier model. This is expressed as:

$$y_i^k = f(x_i, \beta_i^k) \ell^{V_i^k - U_i^k} = y^* = f(x_i, \beta_i^*) \ell^{V_i^{*-U_i^*}} = \ell^{x_i \beta_i^* + V_i^* - U_i^*}$$
(12)

Similarly, y^k is group k output, x is the vector of inputs, v_i^k and u_i^k are the error terms for firms in group k, β^k is a vector of unknown parameters for group k firms. On the contrary, y^* is meta-frontier output

and v_i^* and u_i^k are error terms for metafrontier and β^* is the vector of metafrontier parameters.

The group specific stochastic frontier will be calculated first from the aforementioned model (10), and the estimated parameters and error terms will then be combined to estimate the stochastic meta-frontier model.

Therefore, the technical efficiency (*T.E* (1)) of a group (GSZ) can be expressed as:

$$TE_{A}^{1} = \frac{Observed - output - of - eco \log ical - zonel}{Frontier - output - of - group(1)eco \log y} = \frac{y_{A}^{1}}{y^{1}} = \frac{f_{A}^{1}pppone'h'' that does not require specification}{of (3.7)} = \frac{f_{A}^{1}pppone'h'' that does not require specification}{of (3.7)} = \frac{f_{A}^{1}pppone'h'' that does not require specification}{of (3.7)} = \frac{f_{A}^{1}ppppone'h'' that does not require spec$$

output-oriented efficiency, the gap ratio of farmers in technology ecological group1 (GSZ) can be estimated as:

$$TGR(1) \frac{Frontier - output - of - firms - ecolor metafrontier - output }{metafrontier - output}$$

Finally, the meta-frontier technical efficiency (TE*) can be measured using the equation

$$TE^* = \frac{Observed - output - of - eco \log ico}{metafrontier - output}$$
(15)

Following Huang et al. (2014), for any estimated meta-frontier efficiency to be exact then, $MFTE_i^k$

justifies the definition of metafrontier as an envelope of individual frontiers. Hence, the estimated metafrontier is given as:

$$MFTE_i^k = TGR_i^k \times TE_i^k$$
(16)

Where

$$0 \le MFTE_i^k \le 1, 0 \le TE_i^k \le 1$$
 and $0 \le TGR_i^k \le 1$

 $MFTE_i^k$, are all predicted. while

Propensity Score matching technique

One of the widely used techniques in measuring the impact of agrarian intervention programme or innovation on an outcome variable of interest is the PSM. The PSM is a non-parametric estimation

of any functional form and a random error term distribution. This theoretically appealing because it enables a comparison of the impacts of a treatment on the potential outcome of the treated variable and the control group (Heckman and Vytlacil 2005; Amare et al., 2012). The fundamental principles of the PSM are to $TGR(1) \frac{Frontier - output - of - firms - eco \underset{concerning}{logical} \underbrace{logical - zonel}_{concerning} \text{ a predicted propensity of being treated conditioned on some observed}_{treated}$ covariates (Wooldridge 2003; Heckman and Vytlacil, 2005). There are two critical assumptions underlying the estimation of impact using the PSM. The first assumption Conditional Independence is Assumption (CIA). According to the CIA, the decision to be treated is a random $TE^* = \frac{Observed - output - of - eco \log ical_{contact}^{1} \text{ to be treated is a random }}{metafrontier - output}$ (Abadie and Imbens, 2006; Takahashi and Barrett, 2013). Thus, given some observed characteristics of the respondents, the potential outcome and the treatment status in the absence of treatment are statistically independent (Takahashi and Barrett, 2013).

> The second most important assumption in PSM is the Common Support Assumption (CSA). The CSA states that there should be considerable similarity in characteristics between participants and non-participants of a programme. Thus, respondents being compared have equal probability of belonging to the treated and the control group (Amare et al., 2012; Takahashi and Barret, 2013). If these two assumptions are met, then the magnitudes of the effects of the treatment on the treated; called the average treatment effects on the treated (ATT), can be validly estimated (Smith et al., 2005; Wossen et al., 2015). The ATT can be defined as the differences in the mean of the potential outcome of the treated group with and without treatment defined within the region of common support. The PSM technique follows a twostep estimation procedure. First, treatment variable is modeled as a choice dependent variable using probit or logit

after which the propensity for each observation is calculated. Second, each treated sample is matched with non-treated sample with same or similar propensity score value and the ATT are estimated (Abadie and Imbens, 2006). One drawback of the PSM is that it cannot account for hidden biases, it can only correct for observed heterogeneity to the extent that they are accurately estimated (Oduol *et al.*, 2011; Amare *et al.*, 2012). For the purposes of robustness, validity and sensitivity analysis to complement (PSM), both the IPW and AIPW were conducted.

Inverse-probability weights (IPW) and augmented inverse-probability weights (AIPW)

As robustness checks, the IPW and AIPW estimators were further estimated to assess the impact of improved tomatoes seed variety adoption on production efficiency to validate PSM estimates. According to Amfo, et al. (2024), weighted averages of observed outcomes for computing potential outcomes are used in IPW while AIPW models outcome and treatment probabilities. In effect, AIPW is said to be which combines a term for augmentation to correct the estimator if treatment model is wrongly specified (2024).**Following** (Amfo, et al. Wooldridge (2010), the probability of treatment in IPW and AIPW estimations is

$$p(N) = \Pr(B_i = 1 \mid N) = Y\{z(N)\} = H(B_i \mid N)$$
(17)

where N is pre-treatment covariates' multidimensional vector from observable characteristics, $Y\{z(N)\}$ is cumulative distribution function, N is a vector for obtaining treatment effects. The resulting propensity scores generate independent and artificial samples from treatment allocations. Hence, for treatments having

an inverse weight of 1 and $\frac{\hat{P}(N)}{(1-\hat{P}(N))}$ for non-treatments, the weight would be:

$$g = W_a + (1 - W_a) \frac{\hat{P}(N)}{(1 - \hat{P}(N))}$$
(18)

where \hat{P} represents computed propensity scores. IPW model for ATE is specified below:

$$ATE_{IPW} = j_d^{-1} \sum_{a=1}^{s} W_a \left[r_d(N, \varpi_d) - r_L(N, \varpi_L) \right]$$
(19)

where J_d is number of tomato farmers who adopted ITSV, r(N) is regression model for adopters of ITSV and non-adopters of ITSV and $\varpi_L = (\delta_a, \nu_a)$. Integrating the weighting of equation 18 and equation 19 establishes the AIPW. AIPW model for ATE is specified below:

$$ATE_{AIPW} = j_d^{-1} \sum_{a=1}^{s} W_a \left[r_d^*(N^*, \varpi_d^*) - r_L^*(N^*, \varpi_L^*) \right]$$
(20)

where $\varpi_d^* = (\delta_d^*, v_d^*)$ is attained through estimation of weighted regression.

Accounting for technological heterogeneity and self-selection

Unlike studies by Villano et al. (2015) and Issahaku and Abdulai (2020), where the decision variable is binary and uses the Greene (2010) approach to account for selectivity bias in stochastic frontier, this study's decision variable (ITSV) has more than two categories: Pectomer, Power Roma, and Pectomer/Power Roma. Consequently, to get the MTE scores, the study used the metafrontier technological efficiency based on technology difference. The treated group (adopters) was then matched against the non-treated group

(non-adopters) who shared similar traits using propensity score matching. Because tomato seed varieties have varying yield potentials and complementing services connected with the technological package, their effects on the frontier production function and efficiency can vary. The stochastic metafrontier (SMF) model was estimated to take into consideration this possible technological difference in the SPF model as well as its interactions with production inputs. In accordance with Battese et al. (2004) and Geffersa et al. (2019), the following is the specification of the econometric model for selectivity correction and translog metafrontier production functions:

$$\ln T_{i} = \beta_{0} + \sum_{j=1}^{7} \beta_{j} \ln X_{ij} + \frac{1}{2} \sum_{j=1}^{7} \sum_{k=1x}^{7} \beta_{lk} (\ln X_{ij}) (\ln X_{ik}^{model} + u_{i}^{l} \ln \beta_{1i} + \phi_{1} ITSV_{i}^{l} + \frac{1}{2} \sum_{j=1}^{7} \phi_{j} (\ln X_{ij}) (ITSV_{ij}) + (v_{i} - u_{i}) \qquad \qquad \frac{1ifZ_{i}\alpha + u_{i} > 0}{0otherwise} \right\}$$
(21)

$$\sigma_{ui}^2 = \exp(\delta Z_i^i)$$
(22a)

$$\sigma_{vi}^2 = \exp(\eta Z_i^i)$$

(22b)

The decision variable, technology adoption (ITSV), when included in eqn. (22.a), presents a likely endogeneity problem due to the farmers' self-selectivity, as the two groups of farmers (adopters and nonadopters of each seed variety in the context of this study) may differ in terms of specific household and farm characteristics. The study used a propensity score-matching (PSM) technique, which considers the variations in observed variables between ITSV adopters and non-adopters, to solve this endogeneity concern. Based on specific attributes, the PSM calculates the farmers' probability or propensity score (p-score). This study used an empirical technique consisting of three steps to estimate the

PSM. Initially, we computed a probability model for farmers who would adopt ITSV and p-scores for those who would accept each of the four tomato seed varieties. In accordance with Imbens and Wooldridge's (2009) research, the p-score is described as follows:

$$p(y = 1 \mid X) \equiv \Pr(Ti = 1 \mid x_1, x_2, \dots, x_j) = E[Ti \mid Xi]$$
(22c)

where y is a response variable representing technology adoption, x denotes a set of explanatory variables for a given farm household, and T refers to a given technology. The prediction of p-scores follows a non-linear binary (probit or logit)

$$ITSV_{i}^{*} = Z_{i}\alpha + \psi_{i} \qquad \text{for} \qquad \{ITSV = \frac{1ifZ_{i}\alpha + u_{i} > 0}{0otherwise}\}$$

$$(22d)$$

where $ITSV_i^*$ is a binary variable defined above, Z_i is a vector of factors that may influence farmers' adoption decision, and ψ_i is an error term assumed to be normally distributed with mean 0 and variance σ^2 .

In the second phase, we compared the results of adopting a certain seed variety (treated) to the hypothetical scenario in which they had not adopted, using the pscores. Using the anticipated p-scores, we matched producers of ITSV with the conventional variety (TMSV) subsample in the third stage. Once more, all conventional variety growers were excluded from additional examinations. As a result, a condition that was roughly like one another in terms of visible traits was established for the two farmer groups. It is well known that PSM eliminates baseline inequalities in adoption choices made by farmers. It does not, however, take into consideration the unobservable factors that could affect the choice of technology.

Table 1: Variable Description and A-priori Expectation

Variable	Description/ Measurem			
Sex	Sex of the farmer	Dummy: 1 if the respondent is male, 0 if otherwise		
HH_Size	Household size	Nunmber of people eating from the same pot		
Education	Education of the farmer	Number of years in school		
Primary_Occupation	Main occupation of the farmer	Dummy: 1 if tomato farming is the main occupation, 0 if otherwise		
Income	Annual household income	Ghana Cedi		
Ext_Access	Access to extension service	Dummy; 1 if the respondent had extension visit (s), 0 if otherwise		
Credit_Access	Access to credit	Dummy; 1 if the respondent had credit, 0 if otherwise		
Cropping_Type	Type of cropping	Dummy; 1 if the respondent practices monocropping, 0 if otherwise		
Potential_Yield	Perception yield	Dummy; 1 if a farmer had good yield, 0 if otherwise		
Availability_Mkt	Market access	Dummy; 1 if a farmer had access to market, 0 if otherwise		
Seed_Access	access to seed	Dummy; 1 if a farmer had access, 0 if otherwise		
Resistance_Pest	Resistance to pest	Dummy; 1 if a crop is Resistance to pest, 0 if otherwise		
Early_Maturity	Early maturity	Dummy; 1 if a crop grows earlier, 0 if otherwise		
Storage_Access	storage ability	Dummy; 1 if a farmer had access to storage, 0 if otherwise		
Resistance_Bad Weather	Resistance	Dummy; 1 if a farmer had good weather, 0 if otherwise		
CSZ	Coastal Savanna Zone	Dummy; 1 if the respondent is located in CSZ, 0 if otherwise		
GSZ	Guinea Savannah zone	Dummy; 1 if the respondent is located in GSZ, 0 if otherwise		
FTSZ	Forest Transition Savannah zone	Dummy; 1 if the respondent is located in FTSZ, 0 if otherwise		
FBO	Membership in FBO	Dummy; 1 if the respondent belonged to an FBO, 0 if otherwise		
Insurance	Membership in insurance program	Dummy; 1 if the respondent participated in insurance program, 0 if otherwise		

Results and Discussion

Demographic Characteristics

The results show that respondents have a mean age of 40.53 years with a minimum of 22 years and a maximum of 77 years. Also, 89.6% of the respondents are male while the remaining 10.4% are female, suggesting a male dominance in tomato production in Ghana. The mean formal education is 2.23 years with a minimum of zero and a maximum of seven, showing a very low level of education. The mean farming experience is 13.01 years while the average household size is eight persons per household with a minimum of one and a maximum of twenty-three. This finding is

in-line with GPHS (2020) findings, which revealed that Ghana practices the extended family system where a household has an average population of 5 or more. In line with (Martey,2012) Large household sizes could mean adequate family labor in farming or households can earn additional income if other members are engaged in non-farm activities (Al-Hassan, 2008).

Furthermore, majority (83.9%) of the farmers are engaged in tomato production as their primary occupation. About 97% of the farmers belong to FBOs which helps them identify new technologies, ideas, and access credit to mitigate the acquisition and

use of farm inputs. Membership of FBOs also enables farmers to navigate market imperfections whiles accessing other essential agricultural knowledge through training and demonstration (Osman et al., 2018). On the other hand, the majority (63.2%) of tomato farmers had access to extension services but just 12.2% have access to credit for their tomato production. Also, less than 5.0% of the entire sample belongs to an insurance program.

Table 2 also shows that the mean age of: "techiman" seed variety (TMSV), Power-Roma seed variety (PRSV), and Pectomer (PSV) adopters are 39.9 years, 41, and 40 years respectively. The percentage of male

farmers cultivating TMSV is 84% while the percentages of farmers adopting PRSV and PSV are 87% and 79% respectively. The average farming experiences are 12.032 years, 13.397 years, and 13.000 years for TMSV, PRSV, and PSV. The mean education is uniform for TMSV, PRSV and PSV adopters. Adopters of PSV gained the income highest farm $(GH \notin 705.497),$ followed by adopters of **TMSV** (GH¢673.553) and PRSV (GH¢597.755). There were few tomato farmers in FBOs and those with access to credit and extension services. Also, farmers have different perceptions about tomato seed varieties.

Table 2: Summary Statistics of Variables in MESR Model, by Variety

TMSV		PF	RSV	P	SV	PSV/F	PSV/PRSV	
Variable	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Age of the								
Farmer	38.947	9.783	41.384	11.180	40.232	9.918	39.947	9.983
Sex of the								
Farmer	0.840	0.368	0.873	0.333	0.797	0.404	0.841	0.468
Farming								
Experience	12.032	8.338	13.397	9.887	13.000	9.291	13.012	8.338
Education	2.415	1.780	2.059	2.152	2.373	1.968	2.159	2.252
Income	673.553	638.380	597.755	559.506	705.497	520.298	600.755	501.506
Primary								
Occupation	0.809	0.396	0.823	0.383	0.876	0.331	0.811	0.369
Cropping								
Type	0.404	0.493	0.367	0.483	0.362	0.482	0.437	0.513
Membership								
in FBO	0.979	0.145	0.970	0.170	0.949	0.220	0.770	0.070
Membership	0.032	0.177	0.068	0.251	0.034	0.181	0.132	0.277
in Insurance								
Policy								
Credit								
Access	0.085	0.281	0.148	0.356	0.107	0.310	0.185	0.381
Extension								
Contact	0.637	0.482	0.634	0.484	0.544	0.501	0.337	0.382
Potential								
Yield	0.479	0.502	0.489	0.501	0.540	0.500	0.477	0.510
Market								
Availability	3.691	2.636	2.743	2.191	3.747	2.593	3.944	2.573
Seed Access	3.926	2.591	2.882	2.199	3.787	2.557	3.887	2.657
Pest	• • • •	4 0 4 7	2 = 2 2	4.050	2015		2115	2.172
Resistance	2.883	1.945	2.793	1.879	3.045	2.072	3.145	2.172
Early	2 (17	1 000	2011	1.700	2 102	1.060	2.51.5	1.700
Maturity	2.617	1.890	2.844	1.789	3.183	1.968	2.517	1.790
Storage	2 (20	1 (07	2.055	1.075	2.004	1 000	2.729	1.701
Ability	2.628	1.697	3.055	1.975	2.994	1.890	2.728	1.791
Resistance								
to Bad	2.057	2.165	2.072	2 200	2.502	5 124	2.750	2 1525
Weather	2.957	2.165	3.072	2.298	3.582	5.124	2.759	2.1535

Tomato Seed Variety Adoption

Table 3 provides the distribution of respondents according to ITSV adoption. These are Pectomer seed variety (PSV), Power-Roma seed variety (PRSV) or a combination of the two and the local variety (Techiman seed variety (TMSV)). The adoption of ITSV is a single response variable, thus mutually exclusive. This gives multinomial responses or unordered categories. The results reveal that the

highest proportion (40.55%) of farmers adopted PSV, followed by those who adopted PSV/PRSV (32.28%), PRSV (21.46%), and TMSV (5.71%). The two improved tomato seed varieties have similar characteristics in size and mean of cultivation. Still, they have different potential in early maturity and other agroecology-specific characteristics.

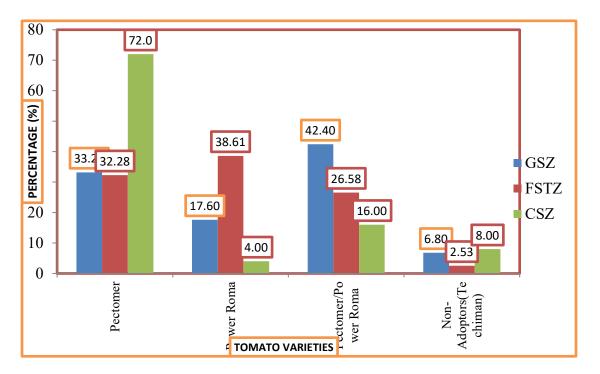
Improved Tomato	Frequency	Percentage (%)
Pectomer	206	40.55
Power Roma	109	21.46
Pectomer/Power Roma	164	32.28
Non-Adopters ("Techiman")	29	5.71
Total	508	100.0

Table 3: Tomato Seeds Adoption

Improved Seeds Adopted in Various Agro-Ecological Zones

Farmers in each of the three agro-ecological zones are adopting better tomato seed varieties, as seen in Figure 1. The distributions of responders across the three agro-ecological zones in the figure below are the same about the adoption of enhanced tomato seed varieties. Around 42.4% of the farmers in GSZ chose PSV/PRSV, whereas the traditional variety, TMSV, was adopted by 33.2%, 17.6%, and 6.8% of the farmers, respectively.

The determinants of adoption of improved tomato seed variety (ITSV)


The econometric results of the determinants of farmers' adoption of tomato seed variety are presented in Table 4. The table contains the marginal effects of the parameters of the multinomial logit (MNL) model of ITSV adoption. The marginal effect represents the unit change in the dependent variable being in a particular category vis-a-vis the reference category when a corresponding independent variable changes by one unit. As a rule of thumb, the non-adopters, that is those who cultivated traditional variety ("Techiman" seed variety), is chosen as the

PSV/PRSV was accepted by 26.6% of farmers in the FSTZ, whereas PSV, PRSV, and the original variety TMSV were adopted by 32.3%, 38.6%, and 2.5% of farmers, respectively. Furthermore, whereas 72.0%, 4.0%, and 8.0% of CSZ farmers adopted PSV, PRSV, and the classic variety TMSV, respectively, only 16.0% of them chose PSV/PRSV. The findings usually imply that in Ghana's several agro-ecological zones, farmers cultivate a greater number of improved varieties than the native type.

base or reference category. This identification procedure allowed for the determination of marginal effects for all the independent variables relating to the adoption of PSV, PRSV or both PSV and PRSV. According to the LR chi-squared test, the fitted MNL model is statistically significant at 1% significance level, meaning that at least one of the regression coefficients is not equal to zero. However, it also means that the model fits the data very well. The results show that adoption of PSV is significantly associated with the gender of the farmer, tertiary education, household income, extension contact, access to credit, perception about potential

yield, and farmer residency in either GSZ or FSTZ. In contrast, the adoption of PRSV is significantly affected by the gender of the farmer, household size, primary occupation, household income, extension contact, access to credit, membership of FBO, perception about potential yield, and farmer residency in FSTZ. Furthermore,

the gender of the farmer, household size, tertiary education, household income, access to credit, perception about potential yield, perception about market availability, and farmer residency in either GSZ or FSTZ significantly influenced tomato farmers' adoption of both PSV and PRSV.

Legend: Figure 1: Improved Seeds Adopted in Various Agro-Ecological Zones

Table 4: Marginal Effects of the Determinants of ITSV adoption

	Pectomech	Power Roma	Pectomech/Power Roma (Joint Adoption)
Variable	Marginal Effect	Marginal Effect	Marginal Effect
Sex of the Farmer	0.0358**	0.0352***	-0.0217**
Age of the Farmer	-0.0006	-0.0005	0.0013
Household Size	-0.0033	0.0034*	0.0022*
Basic Education	-0.0947	0.1056	-0.0177
Secondary Education Tertiary Education	-0.0481 -0.1425*	0.1222 0.2189	-0.0908 -0.1161**
Primary Occupation	0.0615	0.1552*	-0.2037
Income	0.0865***	0.1884***	0.0805***
Extension Contact Credit Access Membership in Insurance Policy Cropping Type Membership in FBO	-0.0249* 0.0001** -0.1260 0.0198 0.0379	-0.0154* 0.0521*** 0.2577 -0.0495 0.1757**	0.0205 -0.0359* -0.1208 0.0366 0.0712
Potential Yield Market Availability	-0.0103** 0.0072	-0.0004** -0.0327	0.0037** 0.0292**

Seed Access	-0.0033	0.0115	-0.0102	
Pest Resistance	-0.0037	0.0009	0.0019	
Early Maturity	-0.0031	0.0099	-0.0071	
Storage Ability	0.0096	-0.0118	0.0051	
Resistance to Bad Weather	0.0122	0.0122	0.0005	
GSZ	0.2603***	-0.5210	0.2877***	
FTSZ	0.0489***	-0.4360***	0.4491***	

Legend: ***, **, and * indicate significance levels at 1%, 5%, and 10% respectively. **NB:** Base category is Non-adopters ('Techiman' variety), sample size is (508) farmers selected from three Agro Ecological zones with (100) Bootstrapping

Estimates of the New-Two Step Stochastic Metafrontier Translog Model of ITSV

Table 4 shows the result of maximum likelihood estimates of the new-two-step stochastic metafrontier translog model of the interaction between the conversional inputs and the adoption of the improved tomato seed varieties. In all the estimations, the translog production frontiers fit the data reasonably well (based on the likelihood ratio tests), with statistically significant variables. The likelihood ratio (LR) chisquared test also rejects the null hypothesis that tomato farmers in the three selected agro-ecological zones operate with similar or homogenous production technologies. In contrast, the study rejects the null hypothesis that tomato farmers in the three selected agro-ecological zones operate with homogeneous production technologies. The results also imply that using the SMF model helped to correct all potential biases in technical efficiency due to differences in tomato seed variety adoption. The SMF model was used to estimate technical efficiencies for ITSV adoption based on the notion that the varieties have varying yield potency or effect due to specific characteristics.

The dependent variable (output) with its correspondents' input variables were all log-transformed and mean-corrected to zero. This implies the first-order coefficient estimates of the model represent the corresponding elasticity and gives room for

the interpretation of the result as partial output elasticities. Therefore, the coefficients are interpreted as the percentage change in output due to a one-percent change in input.

For the adoption of the ITSV (PSV, PRSV and the joint adoption), inputs such as the land size, fertilizer, tractor services, quantity of seed planted by farmers, application of insecticides and herbicides are found to be statistically significant at various levels and positive, implying that for farmers who adopted any of the two ITSV s or jointly adopted the two ITSV, a one percentage increase in any of the above inputs leads to an increase in tomato output by more than one-percent. On the other hand, for the adoption of any of the ITSV or the joint adoption, the partial elasticities of labour show that a 1% increase in labour will decrease tomato output. The positive effect of land and seed agrees with Geffersa et al. (2019) and Awunyo-Vitor (2019) reported a positive and significant effect of land and seed on and maize and rice production in Ethiopia and Ghana but disagrees with the findings of Abro et al. (2014). The negative effect of labour also disagrees with the findings of Asravor et al. (2019) but agrees with Owusu (2016) and Wongnaa and Awunyo-Vitor (2019). The positive effects fertilizer of land. application, insecticides and herbicides application, and the quantity of seed used by a farmer on output, suggest that farmers if given the right training and credit facilities to own these inputs could help improve upon their output.

It is worth noting that the result of the maximum likelihood estimation of metafrontier in both the case of adoption of ITSV and the agro-ecological zones are similar. In both estimations, inputs such as land size, seed, fertilizer, insecticides, and pesticides are found to be statistically

significant at various levels and contribute to increased output while labour is found to be significant but negative thus, it reduces output. Deductively, it can be said that different environmental and technology conditions exist in the various agroecological zones. These, as well as the heterogeneous nature of the ITSVs, influence how farmers adopt ITSVs.

Table 5: Estimates of the New-Two Step Stochastic Metafrontier Translog Model of ITSV

01115V									
Variables	PSV		PRS	PRSV Both		Both PSV/PRSV		Metafrontier Model	
	Coeff.	SE	Coeff.	SE	Coeff.	SE	Coeff.	SE	
lnLand	0.1819**	0.1275	0.2318	1.8054	0.2022**	0.046	-0.0599	0.2164	
lnLabour	-0.0118	0.0608	-0.1283*	0.0658	0.0703**	0.015	- 0.0676* *	0.0304	
lnFertilizer	0.2549*	0.1501	0.0128	0.0933	0.0496	0.032	0.2428	0.1879	
lnSeed	0.2021	1.3977	0.1714**	0.0632	0.0334	0.036	0.8298	0.7929	
InHerbicide	0.0437	0.0621	0.3269**	0.0979	0.0913**	0.022	-0.1716	0.1553	
lnInsecticid e	0.0852	0.0658	-0.0849	0.1314	-0.0426	0.030 1	0.0647	0.1753	
InTractor	0.0247	0.0618	0.0068	0.0566	0.0556**	0.020	-0.0357	0.0682	
lnLand ²	0.1896	0.1271	-0.3529*	0.1852	0.0617	0.040 9	-0.0125	0.1775	
lnLabour ²	0.0086	0.0311	-0.0077	0.0371	0.0393**	0.009	- 0.1019* *	0.3767	
lnFertizer ²	0.2539**	0.1263	-0.1186	0.0601	0.0204*	0.017 1	0.1892	0.1925	
lnSeed ²	0.1168	0.2069	-0.2406	0.2127	-0.0665	0.065 0	0.1412	0.2480	
InHerbicide 2	0.0563	- 0.1998	-0.1648	0.1309	-0.0242	0.042 7	0.2698	0.1654	
lnInsecticid e ²	0.0827	0.2047	-0.0779	0.2154	0.0291	0.050 6	0.5077* *	0.2366	
lnTractor ²	0.0002**	0.1229	0.0037	0.0112	0.0140** *	0.004	-0.0114	0.0144	
lnLand× Labour	0.3222	0.0888	0.1411	0.1309	-0.0006	0.033	-0.1653	0.1437	
lnLand× Fertilizer	0.0808*	0.0931	0.2376	0.1453	0.2277**	0.030	0.1859*	0.0974	
lnLand× Seed	-0.0499	0.1546	-0.2007*	0.1635	-0.1000	0.062 9	-0.0497	0.2533	
lnLand× Herbicide	0.0402	0.1369	-0.0718	0.1529	-0.0569	0.042 9	0.3438*	0.1400	

Shafiwu, 2025.

lnLand× 0 Insecticide	.0767*	0.1448	-0.2375	0.1773	0.0106	0.047	0.3469*	0.1909
lnLand×Tractor	-0.009	9 0.017	-0.0059	0.0193	-0.0023	0.0 056	-0.0086	0.0 163
lnLabour× Fertilizer	0.1333	* 0.078 7	-0.1429	0.0875	0.1061**	0.0 236	0.0467	0.0 935
lnLabour×Seed	0.3844 *	* 0.205 * 7	-0.4564	0.2453	* - 0.2029** *	0.0 622	0.2488	0.3 594
lnLabour× Herbicide	0.0216	0.105 3	0.0024	0.1357	0.0201	0.0 341	0.0182	0.1 111
lnLabour× Insecticide	0.0471		0.0922	0.1632	0.0300	0.0 400	-0.1613	0.1 203
lnLabour× Tractor	0.0111	0.016	0.0049	0.0213	0.0120*	0.0 061	0.0224	0.2 475
lnFertilizer× Seed	0.2025	8	0.2233	0.1855	0.0122*	0.0 611	0.0464	0.2 865
lnFertilizer× Herbicide	0.2499 *	4	0.0882	0.1325	0.0200	0.0 375	-0.3007**	110
InFertilizer× Insecticide	0.1641	9	0.0400	0.1166	-0.0074	0.0 300	0.1764	0.1 434
InFertilizer× Tractor	0.0082	1	-0.0144	0.0122	0.0064	0.0 044	0.0374*	0.0 221
InSeed× Herbicide	0.3119	6	0.3748*	0.2120	0.1065*	0.0 509	-0.2949	0.2 323
InSeed × Insecticide InSeed × Tractor	0.1716	8	0.2803 0.0144	0.2264 0.0255	0.0678 0.0138*	0.0 600 0.0	0.0562 0.0409	0.3 086 0.0
lnHerbicide×	0.0431	5	-0.0195	0.0233	-0.0762*	0.0 076 0.0	-0.5283***	277
Insecticide InHerbicide×	0.0306	0	-0.0193	0.1398	-0.0702	422 0.0	-0.0274*	748 0.0
Tractor	0.0300	3	0.0100	0.0172	0.0248**	040	0.0271	159
InInsecticide × Tractor	0.0034	4 0.017 9	-0.0123	0.0216	-0.0100	0.0 056	0.0189	0.0 176
Constant	-0.024	8 0.371 5	0.0156	0.3933	-0.3021**	0.1 117	-0.9149**	0.4 261
RTS	1.5644		0.3146		1.1439			
Log-Likelihood	175.89		112.03		146.60		43.32	
Wald $\chi^2(35)$	85.31* *	ጥ	125.84**	•	537.27**		103.23***	

Legend: ***, **, and * indicate significance levels at 1%, 5%, and 10% respectively

Effect of ITSV adoption on production efficiency of tomato farmers

Table 6 shows the effect of adoption of ITSV on farmers' production efficiency. It contains the sample statistics (ATT estimates) of efficiency scores for the three tomato seed varieties

Furthermore, ATT of tomato seed adoption on farmers' TE was estimated

using the PSM technique. Accounting for potential selection bias of the adoption variable, the results showed that the group-specific TE scores increased with improved tomato seed varieties adoption. Thus, adopters of improved tomato seed variables seem to be more technically efficient than adopters of the local variety. However, with the exception of Power-Roma adoption, when compared with the

Shafiwu, 2025.

traditional variety, adopters of Pectomer and both Pectomer and Power-Roma would have achieved a lower TE if they had not adopted the improved varieties. For example, farmers who adopted Pectomer and both Pectomer and power roma, had mean TE of 93.1% and 90.9% respectively, compared to 86.2% and 88.8%, had they not adopted. In other words, farmers who adopted Pectomer and both Pectomer and Power-Roma would have become 6.9% and 2.1% less efficient had they not adopted. Likewise, under the counterfactual conditions that adopters of Power-Roma and the local variety had not adopted, they would have gained a higher TE if they had adopted the other improved varieties. The highest TE was

achieved through the adoption of Pectomer. This result is in line with Anang et al. (2020), who found that improved maize variety increases TE in smallholder maize production Ghana. In Nigeria, Obayelu et al. (2016) found that the adoption of improved protein maize increased TE of smallholder farmers. Ahmed et al. (2017) also revealed that farmers in Ethiopia who adopted improved maize varieties attained higher TE (82.34%), compared with their non-adopter counterparts (79.54%). Geffersa et al. (2019) also found that farmers using improved varieties attained a mean TE of 67.87%, while farmers using local maize variety attained a mean TE of 64.53%.

Table 6: Impact of ITSV adoption on production efficiency of tomato farmers

Mean Technical Efficiency Scores						
Adoption decision	Seed Variety	Local variety	PSV	PRSV	Joint Adoption	
Adopting the technology	A	0.818	0.931	0.820	0.909	
Not adopting the technology	В	0.910	0.862	0.914	0.888	
(diff(ATT) = A-B)	C	-0.093***	0.069***	-0.095***	0.021*	
		(0.060)	(0.012)	(0.014)	(0.013)	

Legend: ***, **, and * indicate significance levels at 1%, 5%, and 10% respectively NB: Standard Errors in parenthesis recorded had the farmers failed to adopt

Table 7 shows the IPW and AIPW for robust check and validation of the PSM. IPW and ATE by IPW estimator indicates that adoption of ITSV leads to an increase in productivity by an average of 0.069 and 0.021 for PSV and joint adoption (PSV/PRSV) respectively. General adoption of ITSV leads to an increment in tomato production by 1.840kg from an average of 1.750 kg which would have been

recorded had the farmers failed to adopt ITSV. The IPW, on average, shows that adoption of **ITSV** significantly increases tomato production by 9%. Additionally, the result from the AIPW for the ATE indicates adopters of ITSV obtain an average efficiency increment of about 3% over the non-adopters. This difference is significant at 1% level and superior production indicates the performance accruing to adopters of ITSV over the non-adopters.

Table 7: ATE by IPW and AIPW for impact of ITSV adoption on production Efficiency

Treatment-	Coefficient (robust standard error)						
effects/ATE	ATE	Outcome	Percentage increase				
estimator		Adopters of ITSV	Non-Adopters of ITSV				
IPW	0.818 (0.060)**	1.840 (0.512)***	1.750 (0.182)***	0.09 (0.213)**			
AIPW	0.910 (0.920)*	2.143(0.808)***	2.110 (0.832)***	0.033(0.425)***			

***, ** and * denote significance at 1%, 5% and 10% respectively.

Results from PSM, IPW and AIPW suggest that tomato farmers who adopted ITSV produce higher than the non-adopters, ITSV could be said to be the reason for the rise in tomato production among farmers in the selected agro-ecological zones.

Conclusions and Recommendations

Tomato is one of the most highly consumed vegetables in Ghana. However, available evidence shows that domestic production falls short of the national demand. This necessitates the promotion of improved technologies that can improve production. In summary, the paper comprises the adoption of ITSV and the impact of adoption on production efficiency using metafrontier stochastic frontier model to estimate MTE and employed propensity score-matching technique to address selfselection bias and used Inverse probability weight (IPW) and augmented inverse probability weight (AIPW) to affirm and validate the findings of the PSM results. Tomato production in Ghana is an important activity, especially for the youth and people with no formal education. It is predominantly rainfed and thus seasonal in its production. It, however, contributes to nutritional needs and employs a greater percentage of the youth spanding from production to consumer in the tomato value chain. The cultivation of improved varieties Power-Roma, (Pectomer, and combination of both), or the traditional variety ("Techiman") by farmers was based on their perceptions of the varietal characteristics and some socioeconomic The adoption of ITSV led to increased farmers' production efficiency.

The study suggests that both public and private sector should promote improved tomato seed varieties to improve adoption in all three agro-ecological zones studied. The study recommends for the government through the ministry of food and agriculture to provide capacity and in-service training to extension officers to help improve their skill and to enable them to deliver on their mandate effectively. Also, stakeholders such as MSR, Policy link, IFPRI who provide financial services to farmers should increase their credit access to farmers in order to help them expand their farms and explore new variety.

References

Abdulai, A., and Huffman, W. (2000). Adjustment Structure and Efficiency Rice Economic of Northern Farmers in Ghana. Development Economic and Cultural Change, pp. 503-519.

Abdulai, S., Zakariah, A., & Donkoh, S. A. (2018). Adoption of rice cultivation technologies and its effect on technical efficiency in Sagnarigu District of Ghana. *Cogent Food & Agriculture*, 4(1), 1424296.

Ablorh-Odjidia, E. (2003). From Pwalugu to Cancun: Toward fair agricultural trade policies. *Modern Ghana*, 29.

Acemoglu, D., P. Antras, E. Helpman (2006) "Contracts and Technology Adoption," Harvard, mimeo.

Ahmed, M. H., Geleta, K. M., Tazeze, A., & Andualem, E. (2017). The impact of improved maize varieties on farm productivity and wellbeing:

- Evidence from the east Hararghe zone of Ethiopia. Development Studies Research, 4(1), 9-21.
- Aigner, D.J., Lovell, C.A.K. and Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. *Journal of Econometrics* 6, pp. 21-37.
- Akhilomen, L. O., Bivan, G. M., Rahman, S. A., & Sanni, S. A. (2015). Economic efficiency analysis of pineapple production in Edo State, Nigeria: a stochastic frontier production approach. *Journal of Experimental Agriculture International*, 267-280.
- Amfo, B., Shafiwu, A. B., & Tanko, M. (2024). Fertilizer subsidy in Ghana: a gain or loss of cocoa productivity?. International Journal of Productivity and Performance Management, 73(1), 303-326.
- Asfaw, S., McCarthy, N., Lipper, L., Arslan, A., Cattaneo, A., & Kachulu, M. (2015).

 Climate variability, adaptation strategies and food security in Malawi (No. 1008-2016-80228).
- ASHARANI, K. (2016). PERFORMANCE OF MINIMUM SUPPORT PRICE SCHEME FOR AGRICULTURAL COMMODITIES IN NORTH KARNATAKA.
- Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. *Empirical economics*, 20(2), 325-332.
- Boansi, D. (2014). Comparative performance of agricultural export trade: during and post-agricultural diversification project in Ghana. *Journal of Economics*,

- Management and Trade, 1501-1511.
- Burnside, C., M. Eichenbaum, and S. Rebelo (1995) "Capital Utilization and Returns to Scale," in Ben S. Bernanke and Julio J. Rotemberg, eds., NBER Macroeconomics Annual 1995. Cambridge, MA: MIT Press,, pp. 67—110.
- Clottey, V. A., Karbo, N., & Gyasi, K. O. (2009). The tomato industry in northern Ghana: Production constraints and strategies to improve competitiveness. *African Journal of Food, Agriculture, Nutrition and Development, 9*(6).
- Coelli, T., Sandura, R. & Colin, T. (2002). Technical, allocative, cost and scale in Bangladesh rice production: A non-parametric approach. *Agricultural Economics* 53, 607-626.
- Geffersa, A. G., Agbola, F. W., & Mahmood, A. (2019). Technical efficiency in crop production across agro-ecological zones in Ethiopia: A meta-analysis of frontier studies. *Outlook on Agriculture*, 48(1), 5-15.
- Geffersa, A. G., Agbola, F. W., & Mahmood, A. (2019). Technology adoption and technical efficiency in maize production in rural Ethiopia. *African Journal of Agricultural and Resource Economics*, 14(311-2020-254), 184-201.
- Ghana Statistical Service. (2010). 2010

 Population and housing census:

 Summary report of final results.

 Accra: Ghana Statistical Service.
- Ghana. Statistical Service. (2014). Ghana Living Standards Survey Round 6 (GLSS 6).: Poverty profile in Ghana

- (2005-2013). Ghana Statistical Service.
- Greene, W. (2010). A stochastic frontier model with correction for sample selection. *Journal of productivity analysis*, 34(1), 15-24.
- Greene, W. H. (2008). The econometric approach to efficiency analysis. *The measurement of productive efficiency and productivity growth*, 1(1), 92-250.
- Greene, W.H. (1980). "Maximum Likelihood Estimation of Ecometrics Frontier
- Hilmi, M. (2022). Tomato marketing in developing economies.
- Issahaku, G., & Abdulai, A. (2020). Adoption of climate-smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana. Australian Journal of Agricultural and Resource Economics, 64(2), 396-420.
- Kassie, M., Teklewold, H., Marenya, P., Jaleta, M., & Erenstein, O. (2015). Production risks and food security under alternative technology choices in Malawi: Application of a multinomial endogenous switching regression. *Journal of Agricultural Economics*, 66(3), 640-659.
- Khonje, M., Manda, J., Alene, A. D., & Kassie, M. (2015). Analysis of adoption and impacts of improved maize varieties in eastern Zambia. *World development*, 66, 695-706.
- Karuku, G. N., Kimenju, J. W., & Verplancke, H. (2017). Farmers' perspectives on factors limiting tomato production and yields in Kabete, Kiambu County, Kenya. East African Agricultural and Forestry Journal, 82(1), 70-89.
- Kumbhakar, S. C. & Lovell, C. A. K. (2000). *Stochastic Frontier Analysis*. Cambridge University Press, Longman, Nigeria 35-41.

- Mabe, F. N., Donkoh, S. A., & Al-Hassan, S. (2018). Accounting for rice productivity heterogeneity in Ghana: The two-step stochastic metafrontier approach.
- Ministry of Food and Agriculture (MOFA) (2013). Agriculture in Ghana: Facts and Figures (2010). Statistics, Research and Information Directorate (SRID), Ministry of Food and Agriculture, Ghana.
- Nnaemeka, K. I. (2024). Analysis of Effects of
 Adoption of Post-harvest Loss
 Reduction Technologies on the Welfare
 of Rural Tomato Smallholder Farmers
 in Kaduna, Nigeria (Doctoral
 dissertation, University of Nairobi).
- Oladoyin, O. (2024). Improved Tomato Varieties and Farm Size: Major Determinants of Level of Output of Tomato Crop in Ondo State, Nigeria. *Turkish Journal of Agriculture-Food Science and Technology*, 12(s4), 2770-2776.
- Otokunor, P. B., Onumah, E. E., Bruce-Sarpong, D., & Anaman, K. A. **Determinants** (2023).of competitiveness of irrigated and rain-fed tomato production technologies Ghana. International Journal of *Agricultural* **Policy** and Research, 11(3), 91.
- Owusu, V. (2016). Technical Efficiency of Technology Adoption by Maize Farmers in Three Agro-Ecological Zones of Ghana. Review of Agricultural and Applied Economics (RAAE), 19(395-2016-24362), 39-50.
- Shafiwu, A. B., Donkoh, S. A., & Abdulai, A. M. (2022). The welfare impact of improved seed variety adoption in Ghana. *Journal of Agriculture and Food Research*, 10, 100347.

- Shafiwu, A. B. (2021). Improved tomato Seed Variety Adoption, Efficiency and Welfare of Farmers in Selected Agro-Ecological Zones of Ghana. Doctoral Thesis, University for Development Studies, Tamale, Ghana. [Thesis]
- Tetteh Anang, B., Alhassan, H., & Danso-Abbeam, G. (2020). Estimating technology adoption and technical

- efficiency in smallholder maize production: A double bootstrap DEA approach. Cogent Food & Agriculture, 6(1), 1833421.
- Villano, R., Bravo-Ureta, B., Solís, D., & Fleming, E. (2015). Modern rice technologies and productivity in the Philippines: disentangling technology from managerial gaps.

 Journal of Agricultural Economics, 66(1), 129-154.