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ABSTRACT 

Total Least Squares (TLS) is noted to be a solution approach to solving several geodetic problems. 

The method has the ability to estimate unknown quantities that are useful for many geodetic 

applications. Hence, the main objective of this study was to improve the estimation performance 

of TLS via Radial Basis Function Neural Network (RBFNN) in coordinate transformation. This 

hybrid approach called TLS-RBFNN was applied to Ghana geodetic reference network, which has 

a coverage area of 79857 km2 representing 33.5% of the total land mass (238540 km2). A 

comparative performance analysis of TLS, RBFNN and TLS-RBFNN was carried out using Root 

Mean Square Horizontal Error (RMSHE) and Standard Deviation (SD). Based on the testing 

results, it was found that the TLS-RBFNN improved the transformation accuracy of RBFNN and 

TLS by 20.2% and 37.3% based on the RMSHE. In addition, it was observed that the TLS-RBFNN 

improved the transformation precision based on SD by 0.37% and 8.52%, respectively. 

Furthermore, the Bayesian Information Criterion (BIC) applied confirmed the superiority of the 

hybrid approach than using TLS and RBFNN as independent transformation methods. 

Consequently, the hybrid approach is recommended for enhanced coordinate transformation 

results in Ghana geodetic reference network. 

 

Keywords: Total Least Squares, Artificial Neural Network, Coordinate Transformation, Global 

Navigation Satellite System 

 

INTRODUCTION 

 

Global Navigation Satellite System (GNSS) has been a major source of technology used for Earth 

observations since its inception. GNSS, particularly Global Positioning System (GPS), has become 

increasingly popular over the years, due partly to the multitude of problems associated with the 

conventional surveying techniques. It is well acknowledged that GNSS acquired data is based on 

geocentric system of reference and thus cannot be directly used in astro-geodetic datums. Hence, 

due to change in datum position, size and shape, coordinate transformation between two geodetic 
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datums qualifies it to be a good choice. Thus, the transformation attempts to provide a unifying 

approach that bridges the gap between the different datums. 

 

Several conventional transformation methods such as Bursa-Wolf (Bursa, 1962; Wolf, 1963), 

Molodensky-Badekas (Molodensky et al., 1962; Badekas, 1969), geocentric translation model, 

standard Molodensky, Abridged Molodensky, polynomial and multiple regression (Applebaum, 

1982; Featherstone, 1997; Fraser and Yamakawa, 2004; Newsome and Harvey, 2003) have been 

widely applied in literature. These mentioned techniques have peculiar characteristics they have 

been employing to accomplish the coordinate transformation tasks. Thus, by utilising set of 

transformation parameters. 

 

Over the years, numerous techniques have been proposed and used to determine the transformation 

parameters. In practice, the most common alternatives may be categorised into least squares 

algorithms, partitioning methods, Ill-posed approach, quaternions approach and Procrustes 

algorithm (Collier et al., 1998; Soler and Snay, 2003; Grafarend and Awange, 2003; Shen et al., 

2006; Felus and Schaffrin, 2005; Lippus, 2004). However, the popularity of Artificial Neural 

Network (ANN) methodology has been growing in a wide variety of areas in geodesy and geomatic 

engineering. Its efficacy as a coordinate transformation technique is well documented. Literature 

confirms that the ANN approaches could produce reasonable and promising results that are more 

satisfactory than the empirical affine, conformal and projective transformation methods (Tierra et 

al., 2009; Kumi-Boateng and Ziggah, 2017; Ziggah et al., 2016; Ziggah et al., 2018; Ziggah, & 

Laari, 2018; Ziggah et al., 2019a; Ziggah et al.,  2019b; Gullu and Narin, 2019). The strength of 

the ANN has been credited to its ability to effectively reduce the distortion and heterogeneity in 

spatial data related to the different geodetic datums. Moreover, the self-adaptive feature of the 

ANN enables it to appropriately identify hidden patterns in a data set to build the prediction model. 

 

In the last few years, combining ANN and empirical methods to create a hybrid approach is 

becoming very popular among geoscience researchers. Examples of some application areas 

include landslide studies (Huang et al., 2016), hydrological studies (Tiwari et al., 2016), 

meteorology (Ghorbani et al., 2016) to mention but a few. Literature reveals that the hybrid 

approach offers better computational efficiency than separately applying the methods. Whereas 

the hybrid concept is becoming much appreciated, none of the existing studies in coordinate 

transformation fully address the issue of combining empirical transformation procedure and ANN 

technique or any other soft computing techniques. The dominance of ANN to solve several 

geodetic problems (e.g. coordinate transformation, tide modelling, gravity field modelling, orbit 

determination, digital terrain height estimation, crustal deformation, GNSS error modelling, etc.) 

makes it important computational tool (Tierra and De Freitas, 2005; Kaftan et al., 2011; Liao et 

al., 2012; Salim et al., 2015; Lei et al., 2015; Okwuashi and Ndehedehe, 2015; Huang et al., 2016; 

Razin and Voosoghi, 2017; Gullu and Narin, 2019).  

 

Therefore, motivated by the successful application of ANN, the main focus of this study is to 

explore the potential of integrating Total Least Squares (TLS) and Radial Basis Function Neural 

Network (RBFNN) in coordinate transformation process. The choice of these methods was based 

on its frequent use, simplicity in application and computational efficiency. The TLS-RBFNN 

integrated approach was tested in Ghana geodetic reference network to perform coordinate 

transformation between the global WGS84 and Ghana’s War Office 1926 ellipsoid. Such 

integration approach is significant for Ghana because of the astro-geodetic datum used for 
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surveying and mapping works. In addition, with all the attendant problems of the astro-geodetic 

datums in mind (Varga, Grgić, & Bašić, 2017; Poku-Gyamfi, 2009), the need to explore and test 

the potential of different coordinate transformation procedures in the Ghana geodetic reference 

network is reasonable. In continuance of that, the TLS and RBFNN when combined will both use 

their strengths and weaknesses to complement each other. Thus, the hybrid approach will combine 

their function approximation and nonlinear modelling capabilities.  

 

Moreover, using TLS can improve the performance of the RBFNN in many aspects such as training 

speed, reduction in the size of the network leading to fast convergence and satisfactory 

transformation results. The proposed hybrid approach could be categorised as a combination of 

knowledge-based system and empirical model. The idea behind this study is not to take away the 

significance of the empirical transformation models, but to demonstrate from a practical 

perspective how combining those with ANN can be more effective in solving coordinate 

transformation problems. Evidently, this study shows the potential and the resulting consequences 

of using such hybrid approach as a practical tool for coordinate transformation in Ghana geodetic 

reference network. 

 

 

MATERIALS AND METHODS 

 

Study Area and Data Used 

Ghana is a West African country bounded by latitudes 4°30' N and 11o N, and longitudes 3o W 

and 1o E (Mugnier, 2000). The country uses the Accra 1929 datum for its geospatial activities. The 

reference ellipsoid of the Accra 1929 datum is the War Office 1926. This reference ellipsoid has 

its origin at latitude 5o 23' 43.33'' N and longitude 0o 11' 52.3'' W with semi-major axis a = 

6378299.99899832 m, semi minor axis b = 6356751.68824042 m and inverse flattening f = 296 

(Poku-Gyamfi, 2009; Ayer, 2008; Ayer and Fosu, 2008). For the purposes of land surveys, the 

Transverse Mercator projection has been adopted to derive projected grid coordinates in Easting 

and Northing. The Transverse Mercator has its origin at longitude 01o 00' W and latitude 04o 40' 

N with false Easting value of 274319.736 m added to all Y coordinates to avoid negative 

coordinates and setting the false Northing to zero (Mugnier, 2000; Poku-Gyamfi, 2009). A used 

scale factor of 0.99975 was found to eliminate the scale distortion effect within the country but 

this can exceed the projection values only at the borders (extreme ends) of the country. Since Accra 

1929 datum is non-geocentric but GPS acquired data based on WGS84 is geocentric, localisation 

of the GPS data will require coordinate transformation. In this study, two sets of 19 co-located 

points were collected based on the War Office 1926 ( , , )WARh   and WGS84 ; where 

 is the geodetic latitude,  is the geodetic longitude and  is the ellipsoid height. The point 

distribution of the data used for the analysis is shown in Figure 1. These data sets were provided 

by the Ghana Survey and Mapping Division of Lands Commission from the Land Administration 

Project. It is important to note that these co-located points are the only available data set and those 

for the northern part and the rest of the country are yet to be observed. 

 

 

 

 

84),,( WGSh

  h
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 FIGURE 1. Co-Located Points Distribution in the Study Area 

 

 

 

APPLIED METHODS 

 

Total Least Squares 

The generic least squares type is the Ordinary Least Squares (OLS) with the implicit assumption 

that the errors in the design matrix are zero but the only errors present can be found in the 

observation vector. However, in geodetic practice, all observed data (coordinates) may suffer some 

form of errors. In order to correct for such errors, a more pragmatic TLS approach is needed (Felus 

and Schaffrin, 2005; Akyilmaz, 2007; Okwuashi and Eyoh, 2012). Consequently, this study 

applied the TLS approach for the coordinate transformation due to its superiority to the OLS in 
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producing precise coordinate transformation results as indicated by several authors (Akyilmaz, 

2007; Felus and Schaffrin, 2005; Okwuashi and Eyoh, 2012).  

 

Golub and Van Loan (1980) introduced the TLS approach as a solution technique to estimate an 

over-determined system of linear equations expressed in Equation (1) as 

BX K=   (1) 

where B ∈ Rm×n and K ∈ Rm×d  are the given datasets, X ∈ Rn×d is the unknown parameters to be 

determined, m is the number of observations, n is the number of unknowns and m ≥ n. To estimate 

X in Equation (1), the design matrix (B) is considered to be affected by random errors expressed 

in Equation (2) (Akyilmaz, 2007) as 

( )B KB v X K v+ = + , rank( )B m n=    (2)  

It must be known that both Kv  (error vector of observations) and Bv  (error matrix of data matrix) 

in Equation (2) are presumed to have independent and equivalent distributed rows with zero mean 

and equal variance (Akyilmaz, 2007). To minimize the errors in the data, the TLS approximation 

(Equation 3) is iteratively applied. 

  ( 1)ˆ ˆ ˆ ˆmin ; ; , ; m n

F

B K B K B K R  +   − 
   

, subject to: ˆ ˆ( )K R B  (3)  

where m and n are the same as defined in Equation (1); B̂  is the new estimated data matrix; K̂  is 

the new estimated observation vector; and 
F

 is the Frobenius norm of m x n matrix. Equation 

(3) iteration continues until a minimizing matrix ˆ ˆ;B K 
   is found such that any X̂  (estimated 

unknown parameters) satisfying ˆ ˆ ˆBX K= is the TLS solution and  ˆ ˆ ˆ ˆ; ; ;B K B K B K     = −
     is 

the corresponding TLS correction (Akyilmaz, 2007; Golub and Van Loan, 1980; Okwuashi and 

Eyoh, 2012). It is worth mentioning that the TLS solution is usually determined through the 

functional relation expressed in Equation (4) as 

  ˆ; ; 1 0
T

TB K X − 
 

.  (4) 

In this study, the Singular Value Decomposition (SVD) approach was applied on the matrix 

 ;B K  to solve the TLS problem. Using the SVD enables the matrix  ;B K  to be investigated to 

know whether it is rank deficient or not. The SVD mathematical representation of the matrix 

 ;B K (Van Huffel and Vandewalle, 1991) is given in Equation (5) as 

 ; TB K USV=   (5) 

where , 

, 

, 

, 
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The are the singular values of B and [B:K], and the vectors ui and vi are the ith left and right 

singular vector of B and [B:K], respectively. A TLS solution exists if and only if V22 is non-singular 

and the solution is unique if and only if . The TLS solution is therefore expressed as 

 and the corresponding TLS correction matrix is expressed in Eq. (6) as 

  2; (0, ) T

TLS TLS TLSC B K U diag V =   = −  .  (6) 

 

 

Radial Basis Function Neural Network 

Broomhead and Lowe (1988) proposed RBFNN technique which processes information by using 

norms and radial basis functions. This network creates an alternative means of applying arbitrary 

input-output patterns for function approximation problems (Deyfrus, 2005). It has a feedforward 

topology consisting of three layers; the input, hidden and output that are completely linked 

together. Figure 2 shows the RBFNN architecture with inputs (X1, X2, …, Xd), radial basis function 

(φ1, φ2, … , φN), weight (W1, W2, …, WN) and output (y) respectively. 

 

 
 

 

FIGURE 2. Radial Basis Function Neural Network Structure 

 

 

This study adopted the supervised learning algorithm to train the RBFNN. A code written in 

MATLAB environment was used to carry out the RBFNN training. In the RBFNN scheme, the 

input layer comprises the data that are submitted into the network by unweighted connections. 

These input nodes are then transmitted into the hidden layer chamber by a non-linear activation 

function. Within the hidden layer, each neuron computes a Euclidean norm that represents the 

distance between the input to the network and the position of the neuron called the centre. This is 

then inserted into a radial basis transfer function which estimates and outputs the activation of the 

i

1+ nn 

1
2212

ˆ −
−= VVX tls
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neuron (Deyfrus, 2005). This study applied the Gaussian activation function expressed in Equation 

(7) as 

         (7) 

where denote the hidden layer output of the ith unit, X is the input vector, µj is the centre of 

the Gaussian function for the hidden node j, σi is a spread parameter for regulating smoothness 

properties of the Gaussian function and is the Euclidean norm. When calculations are 

completed, the output layer containing the identity activation function then uses the weighted sum 

of the radial basis function layer as propagation function.  

The estimated output layer results from the RBFNN could be represented by Equation (8) (Jain, 

Singh, & Srivastava, 2011) as 

,          (8) 

where M is the number of radial basis function and w represent the weight of the network. The 

mean squared error (MSE) for the Xth data was estimated using Equation (9) (Jain et al., 2011). 

          (9) 

where and are the actual output and target for the Xth data, respectively. The training process 

was then repeated for all training data. Equation (10) (Jain et al., 2011) was applied to estimate the 

error function . 

        (10) 

where  represents the total number of training data. The connection weight, 
piw  which 

minimizes  was updated using Equation (11). 

        (11) 

where is given by Equation (12) as 

.      (12) 

where  is the learning rate at Kth iteration,  is the error signal of the Xth data, is the 

momentum parameter and AXi denote the output vector of the hidden layer neuron i for all the input 

data. This RBFNN training process was repeated till the network error reaches an acceptable value. 

 

Proposed Hybrid Model 

Local geodetic networks are highly distorted compared to the geocentric reference systems. The 

distortion is partly contributed by the conventional surveying techniques such as triangulation, 

traversing, resection and astronomical observations used in establishing the local geodetic 

network. Thus introducing distortions, systematic or observational errors within the network. 

Furthermore, the adjustment procedures used to adjust the local geodetic networks were of lower 

accuracies (Varga et al., 2017 and references therein). This supports the point made in Featherstone 
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(1997) and Grgić et al., (2015) that the present conformal transformation models often times are 

unable to accurately reduce the distortion effects on the final transformation outputs. 

 

After careful review of existing research works pertaining to Ghana geodetic network, the author 

realised that in many applications of the conformal transformation models, large residuals are often 

produced. Hence, in this study an attempt has been made to explore the integration of TLS and 

RBFNN in the transformation process. The motive is to determine the viability of such integrated 

approach for coordinate transformation in Ghana. Figure 3 denotes a summary of the proposed 

hybrid approach.  

 
FIGURE 3. Flow Chart of the Proposed Hybrid Approach 

 

Specific detail on how the hybrid approach was developed and implemented is presented as 

follows: 

 

Step 1: Converting Geodetic Coordinates to Cartesian Coordinates 
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The geodetic coordinates of co-located points in both WGS84 and War Office 1926 

were converted into Cartesian coordinates using Equation (13) (Hofmann-Wellenhof 

and Moritz, 2006). The results from Equation (13) for the WGS84 and War Office 1926 are 

designated in this study as (X, Y, Z) WGS84 and (X, Y, Z) WAR, respectively. 

2

( ) cos cos

( )cos sin

[ (1 ) ]sin

X S h

Y S h

Z S e h

 

 



= +

= +

= − +

               (13) 

where S is the radius of curvature in the prime vertical as defined in Equation (14). 

2 21 sin

a
S

e 
=

−
  (14) 

a and e are the semi-major axis and first eccentricity of the reference ellipsoid. 

 

Step 2: Determine Coordinate Transformation Parameters 

Out of the 19 co-located points, 14 (X, Y, Z ) WGS84 and (X, Y, Z)WAR were purposefully chosen as 

reference points set defined as P = (P1, P2, … , P14). These points were applied to determine the 

transformation parameters for transforming WGS84 coordinates into Ghana War Office 1926. The 

remaining five points served as the independent reference test set defined as T = (T1, T2,…,T5) for 

the model validation (see Figure 1). The seven parameter Bursa-Wolf (Bursa, 1962; Wolf, 1963) 

transformation model (Equation 15) was applied. It is known that for 14 common points, 35 

observation equations more than the seven unknown parameters to be estimated. This clearly 

creates an over-determined system of linear equations. The TLS technique can be applied to such 

situations to achieve the best estimates of the unknown parameters. Hence, the TLS procedure 

based on the Singular Value Decomposition (SVD) approach (Equation 5) was applied to Equation 

(15) to determine the unknown transformation parameters. These determined parameters consisted 

of three translation vectors, three rotational parameters and one scale factor. 

84

84

84

WAR WGSX

WAR Y WGS

ZWAR WGS

X XT

Y T R Y

TZ Z



    
    

= +
    
        

  (15) 

where TX, TY and TZ are the translation vectors along X-, Y- and Z-axes respectively of the two 

reference systems. η is the scale factor and R is the total rotational matrix (product of the rotation 

angles). 

 

Step 3: Apply the Determined Transformation Parameters 

The seven transformation parameters determined in Step 2 were then used to transform the 14 (X, 

Y, Z) WGS84 into the War Office 1926 datum. These newly transformed Cartesian coordinates are 

denoted in this study as (X, Y, Z) TLS NEW. Similarly, the transformation parameters were also 

applied to transform the five independent test points into War Office 1926 datum. These 

transformed test coordinates are represented in this work as (X, Y, Z) TLS TEST. 

 

Step 4: Convert Cartesian Coordinates to Geodetic Coordinates 

The (X, Y, Z) TLS NEW and (X, Y, Z) TLS TEST obtained in Step 3 were then converted to geodetic 

coordinates using Bowring inverse method (Equations 16-18) (Bowring, 1976). The converted 

coordinates were denoted in this study as  and , respectively. 

84),,( WGSh

WARh),,( 

1),,( NEWTLSh 1),,( TESTTLSh



Ghana Journal of Science, Technology and Development  Kumi-Boateng and Ziggah, 2020 

47 
 

2 3
1

2 3

sin
tan

cos

Z b

p e a

 




−  +
=  

− 
  (16) 

1tan
Y

X
 −  
=  

 
  (17) 

2 2cos sin 1 sinh p Z a e  = + − −   (18) 

 

where  is the parametric latitude (Equation (19)), b is the semi-minor axis of the ellipsoid, p is 

the perpendicular distance from the rotational axis (Equation (20)) and ε (Equation (21)) is the 

second eccentricity. 

1tan
aZ

bP
 −  
=  

 
  (19) 

2 2p X Y= +   (20) 
2

21

e

e
 =

−
  (21) 

 

Step 5: Fuse TLS Results into RBFNN (Hybrid model) 

The reverse conversion in Step 4 was necessary in order to select the input variables that produces 

the best results when the RBFNN was trained. This is important because it has been found that the 

appropriate input parameters used have influence on the prediction accuracy of the ANN model 

(Dreiseitl and Ohno-Machado 2002; Ismail et al., 2012). In the light of that, several input 

parameters were tried and tested to determine the one that can produce the best transformation 

results. Firstly, (X, Y, Z) TLS NEW obtained in Step 3 was used as the input data and its 

corresponding (X, Y, Z) WAR was used as the output data in the RBFNN training. In the second 

scenario, obtained in Step 4 was used as the input data and as the 

output data. In the third scenario, The RBFNN was trained using  obtained in Step 

4 as the input variables and  as the output variable. It was found that using the third case 

yielded better fusion of TLS and RBFNN results. Thus, the hybrid model was formed by using the 

TLS transformed coordinates as the input data with its corresponding coordinates in the Ghana 

War Office 1926 as the output data. When the training process was over, the hybrid calculation 

model for coordinate transformation in the study area was developed. 

 

Step 6: Transforming Coordinates with Hybrid Model (TLS-RBFNN) 

For any position in the study area, when it transformed geodetic coordinates are computed using 

the TLS algorithm (Steps 1 to 4), then its improved transformed coordinates can be calculated 

using the TLS-RBFNN developed in Step 5. In furtherance of this, the five testing points were 

used to test the capability of the TLS-RBFNN model developed. In that case,  

obtained in Step 4 was used as the input data in the optimum trained hybrid model and its 

corresponding known coordinates in the War Office 1926 denoted as served as the 

target output. The new predicted output from the optimum trained hybrid model is represented as

. The  geodetic coordinates were then projected onto the Transverse 

1),,( NEWTLSh WARh),,( 

1),( NEWTLS

WAR),( 

1),( TESTTLS

TESTWAR),( 

NEWWAR),(  NEWWAR),( 
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Mercator 1o NW to obtain 2D projected grid coordinates in Easting (E) and Northing (N) using 

equations in Dzidefo (2011). The computed projected grid coordinates were then compared with 

the known grid coordinates for statistical analysis. The map projection conducted was important 

because Ghana uses the 2D projected grid coordinate system for its surveying and mapping related 

activities. 

 

Step 7: Statistical Analysis 

In order to check the efficiency of TLS, RBFNN and TLS-RBFNN, residuals between the known 

and computed projected grid coordinates were estimated. Statistical evaluation metric presented 

in Section 4 were then used to quantify these residuals generated for results interpretation. 

 

Model Performance Criteria 

Performance criteria indicators (PCIs) such as Horizontal Error (HE), Root Mean Square 

Horizontal Error (RMSHE), Mean Horizontal Error (MHE), Standard deviation (SD), Maximum 

Error (Max Error) and Minimum Error (Min Error) were used to check the adequacy of the 

methods applied. The mathematical representations (Ziggah et al., 2019a) of the various PCIs are 

given by Equations (22) to (27). 
2 2 2 2( ) ( )

i i i it o t oHE E E N N E N= − + − =  +    (22) 

2

1

( )
n

i

i

HE

RMSHE
n

==


               (23) 

1

1 n

i

i

MHE HE
n =

=              (24) 

2

1

1
( )

1

n

i

SD HE HE
n =

= −
−
               (25) 

( )
1

Max HE max
n

i i
HE

=
=             (26) 

( )
1

Min HE min
n

i i
HE

=
=                

(27) 

where n is the total number of test data used, 
it

E and 
it

N represent the known Easting and Northing 

grid coordinates while 
ioE  and 

ioN are the computed grid coordinates given by the TLS, RBFNN 

and TLS-RBFNN, respectively. HE  is the average value of the horizontal error. 

 

 

RESULTS AND DISCUSSION 

 

Model Performance Analysis 

The RBFNN model which gave the optimum results was [2-14-2]. Thus, 2 inputs consisting of 

, 14 hidden neurons and  as the 2 outputs. The optimum TLS-

RBFNN model comprises [2-14-2]. That is,  is the 2 inputs data, 14 hidden neurons 

in the hidden layer and as the 2 outputs. In this study, the criterion to determine the 

optimum RBFNN and TLS-RBFNN model was based on the concept of ANN generalisation. It is 

a well-known fact that generalisation provides a more convincing estimate on the validity of ANN 

),( 8484 WGSWGS  ),( WARWAR 

1),( NEWTLS

),( WARWAR 
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models (Urolagin et al., 2011). That is, the ability of ANN model to perform well when untrained 

data is presented to the network. To achieve this, the Mean Square Error (MSE) criterion was 

employed. That is, the model structure that produced the least MSE when the test data was fed into 

the RBFNN and TLS-RBFNN trained models was selected as the optimum model. For the TLS, 

the derived transformation parameters and their respective standard deviations of the 14 common 

points for transforming WGS84 coordinates to War Office 1926 datum are presented in Table 1. 

 

TABLE 1. Total Least Squares Estimated Transformation Parameters 

Parameter Unit Value SD 

Tx Metre -153.0127 11.6995 

Ty Metre 63.7693 22.4533 

Tz Metre 368.0575 21.1464 

Rx  Radian -1.07×10-06 1.86×10-06 

Ry Radian -6.39×10-06 3.32×10-06 

Rz  Radian 4.84×10-06 3.50×10-06 

S Part per million -7.49×10-06 1.82×10-06 

NB: Tx, Ty, Tz are the translation parameters. Rx, Ry and Rz are the rotational parameters 

and S is the scale factor 

 

Analysis of Table 2 shows the coordinate differences (∆E, ∆N) between the known and computed 

projected grid coordinates from TLS, RBFNN and TLS-RBFNN, respectively. 

 

TABLE 2. Deviation of transformed test coordinates from existing coordinates 

Test Point 
TLS  RBFNN TLS-RBFNN 

∆E(m) ∆N(m) HE (m) ∆E(m) ∆N(m) HE (m) ∆E(m) ∆N(m) HE (m) 

T1 0.0793 1.7516 1.7534 0.2608 1.7445 1.7638 -0.2013 0.0387 0.2050 

T2 0.3799 -0.3783 0.5361 0.5529 -0.0397 0.5543 -0.1618 0.4065 0.4376 

T3 -0.7647 0.0937 0.7704 -0.6216 -0.4831 0.7873 0.2997 0.5741 0.6476 

T4 -1.5285 -0.1834 1.5394 -0.8093 -0.3765 0.8926 0.0483 -0.3246 0.3282 

T5 -1.2642 -1.4062 1.8909 -0.7940 -0.5080 0.9426 0.0580 1.1290 1.1305 

Mean -0.6196 -0.0245 1.2980 -0.2822 0.0674 0.9881 0.0086 0.3647 0.5498 

SD 0.8292 1.1432 0.6074 0.6417 0.9559 0.4587 0.2012 0.5503 0.3631 

NB: T1 to T5 are the point’s identification for each test control points used 

 

A careful study of the results in Table 2 reveals how much the computed Easting and Northing 

coordinates produced by TLS, RBFNN and TLS-RBFNN of the test points vary in conjunction 

with the ideal residual threshold value of zero. These values (∆E, ∆N) give a better indication on 

the amount of discrepancies in the TLS, RBFNN and TLS-RBFNN computed coordinates 

compared to the known coordinates by way of errors. From Table 2, there is quantitative evidence 

of improvement of the TLS and RBFNN results by TLS-RBFNN. This could mean that the 

calibration capability of TLS-RBFNN architecture was better for the given training data and that 

has greater learning abilities compared to independently applying TLS and RBFNN to the data. In 

continuance of this, the result in Table 2 shows that the hybrid TLS-RBFNN model could 

generalise better with the test data than TLS and RBFNN. The SD values (Table 2) of the 
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coordinate differences estimated signify a practical expression for the precision of the computed 

coordinates given by TLS, RBFNN and TLS-RBFNN, respectively. In Table 2, it can be seen that 

TLS-RBFNN had the least SD values indicating the limit of the error bound by which every value 

within the computed test coordinates values varies from the most probable value. 

Table 3 provides summary performance statistics of the total horizontal errors for TLS, RBFNN 

and TLS-RBFNN, respectively. From Table 3, it can be noticed that the hybrid TLS-RBFNN 

showed better results as compared to the other two techniques. Thus, TLS-RBFNN showed an 

improved percentage values of 76.870 and 43.140 in the transformation accuracy (RMSHE) for 

TLS and RBFNN. In terms of MHE, TLS-RBFNN improved TLS and RBFNN results by 74.820 

and 43.830% respectively. For the maximum horizontal error, 76.040 and 63.330% were the 

percentage improvements by TLS-RBFNN. In the case of the minimum horizontal error, 33.110 

and 34.930% were the improved percentage values. The inference made here is that TLS and 

RBFNN could not model the uncertainties of coordinates related to War Office 1926 and WGS84 

in an effective way as compared to the TLS-RBFNN. On the basis of the SD values, TLS-RBFNN 

improved TLS and RBFNN by 24.430 and 9.560% (Table 3) with regards to the transformation 

precision. 

 

TABLE 3. Total Horizontal Residuals of the Coordinate Differences Using the Three 

Methods 

Performance 

Indicators 

TLS 

(m) 

RBFNN 

(m) 

TLS-RBFNN 

(m) 

Improvement 

for TLS (%) 

Improvement 

for RBFNN 

(%) 

RMSHE 1.4072 1.0699 0.6385 76.870 43.140 

MHE 1.2980 0.9881 0.5498 74.820 43.830 

Max HE 1.8909 1.7638 1.1305 76.040 63.330 

Min HE 0.5361 0.5543 0.2050 33.110 34.930 

SD 0.6074 0.4587 0.3631 24.430 9.560 

NB: RMSHE, MHE, Max HE, Min HE and SD are defined in Equations (22) to (27) 

 

Model Selection Criterion 

To select the best performing model, the Bayesian Information Criterion (BIC) was explored. In 

this study, the HE values for each of the five test points were used to calculate the BIC value. The 

BIC was chosen because it tends to favour models with fewer parameters compared to other 

information criteria because its penalty term is smaller (Burnham and Anderson, 2002). The BIC 

is represented mathematically (Equation (28)) as 

                 (28) 

where  denotes the number of observations,  is the sum of squares of the residuals and  

is defined as the penalty term which corresponds to the number of unknown parameters in a 

coordinate transformation model (Table 4). Thus, the SSE is acting as an optimality criterion to 

aid in the BIC model selection. Therefore, a model is selected as the most suitable candidate model 

if it gives the least estimated BIC value. With this in mind, it can be inferred from Table 4 that 

TLS-RBFNN is more feasible for transforming coordinates between WGS84 datum and War 

Office 1926 datum. 
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TABLE 4. Bayesian Information Criterion Model Selection Results 

Method K parameter BIC Value 

TLS 7 14.6817 

RBFNN 2 3.8944 

TLS-RBFNN 2 -1.2669 

 

 

Coordinate Transformation Using Entire Dataset 

Ghana GNSS reference station network at the moment covers only the Mid-Southern parts with 

expansion to cover the North and the whole country is yet to be done. Therefore, due to limited 

data availability in the study area (Ghana), a particular cross-validation technique was adopted to 

test the potential of the already determined optimal models of TLS, RBFNN and TLS-RBFNN 

using the entire dataset. In this approach, the testing data of five points were swapped in the 

optimized models with the 19 co-located points. Thus, the 19 points were applied as the testing 

data in the optimum RBFNN and TLS-RBFNN structure of [2-14-2] which has already been 

formed using the training data of 14 co-located points. Similarly, the transformation parameters 

determined using the TLS approach were also used to transform the whole dataset. 

 

Mathematically, the test results produced using the entire dataset will give a better indication of 

all possible variations in the data and that will enable the model developer and users to ascertain 

the strength and generalisation capability of the developed models should the data size increase in 

the study area. In addition, it will provide a realistic estimate of the predictive potential of the TLS, 

RBFNN and TLS-RBFNN across the entire study area. This procedure has been adopted in several 

studies in order to check the overall generalisation of ANNs (Konaté, Pan, Khan, & Ziggah, 2015; 

Ziggah et al., 2016b). The entire data testing results achieved by TLS, RBFNN and TLS-RBFNN 

are presented in Table 5. 

 

Judging from the outcomes in Table 5, it can be inferred on the basis of the HE values that TLS-

RBFNN model achieved satisfactory testing results than RBFNN and TLS. This demonstrates that 

TLS-RBFNN has good generalisation capabilities across the entire study area. Hence, it can 

evidently be stated that the TLS-RBFNN computed projected grid coordinates (testing outputs) 

are in better agreement to the known projected grid coordinates.  

 

In addition, the lowest SD values (Table 5) obtained by TLS-RBFNN revealed its generalisation 

superiority to the other methods. These SD values show the range of precision of the TLS, RBFNN 

and TLS-RBFNN computed projected grid coordinates on a normal distribution curve. In line with 

this, it can be stated that the TLS-RBFNN transformation results are more precise and accurate 

than the TLS and RBFNN. Intuitive interpretation of Figure 4 shows that the TLS-RBFNN 

generalised better across the entire data for the study area than the TLS and RBFNN, respectively. 
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TABLE 5. Deviation of Transformed Test Coordinates Using the Whole Data set 

  

Point 

TLS RBFNN TLS-RBFNN 

∆E (m) ∆N(m) HE(m) ∆E (m) ∆N(m) HE(m) ∆E (m) ∆N(m) HE(m) 

T1 -0.3692 1.1937 1.2495 -0.4021 0.8442 0.9351 -0.1086 -0.4933 0.5051 

T2 -0.1522 0.9330 0.9454 -0.2589 0.8414 0.8803 -0.0110 0.3605 0.3607 

T3 0.4910 -1.6776 1.7479 0.2246 -1.1899 1.2109 -0.0064 -0.0365 0.0371 

T4 -0.6727 -0.6522 0.9370 -0.5209 -1.3907 1.4851 -0.0978 -0.2829 0.2993 

T5 0.0600 -0.9153 0.9173 -0.2790 -0.4701 0.5466 -0.0894 -0.6217 0.6281 

T6 0.2516 0.5738 0.6265 0.0827 0.8848 0.8886 0.2740 0.9442 0.9831 

T7 0.3772 -0.1226 0.3966 0.2504 -0.1123 0.2744 0.0615 0.5202 0.5238 

T8 0.3940 -0.3777 0.5458 0.1609 -0.1136 0.1969 0.3702 0.1237 0.3903 

T9 -0.4205 -0.4637 0.6260 -0.7729 -0.1023 0.7796 -0.6297 -0.4714 0.7866 

T10 0.3165 0.7873 0.8485 0.3901 0.0289 0.3912 -0.0109 0.3524 0.3526 

T11 -0.3867 0.5759 0.6937 -0.5904 0.1356 0.6057 0.1550 0.2527 0.2964 

T12 0.6269 0.0195 0.6272 0.3452 -0.1077 0.3616 0.3119 -0.5031 0.5919 

T13 -0.4063 0.3972 0.5682 -0.6027 0.3222 0.6834 -0.2460 -0.1002 0.2656 

T14 -0.1628 -0.2977 0.3393 -0.4740 0.1553 0.4988 0.0473 -0.0497 0.0686 

T15 0.0793 1.7516 1.7534 0.2608 1.7445 1.7638 -0.1920 -1.5900 1.6016 

T16 0.3799 -0.3783 0.5361 0.5529 -0.0397 0.5543 -0.1171 0.7646 0.7735 

T17 -0.7647 0.0937 0.7704 -0.6216 -0.4831 0.7873 0.3221 0.5301 0.6203 

T18 -1.5285 -0.1834 1.5394 -0.8093 -0.3765 0.8926 -0.0032 0.0248 0.0251 

T19 -1.2642 -1.4062 1.8909 -0.7940 -0.5080 0.9426 0.0570 1.1290 1.1304 

SD 0.5952 0.8661 0.4816 0.4589 0.7321 0.4001 0.2337 0.6379 0.3964 

NB: T1 to T19 are the point’s identification defining each test control points used  

 

 
FIGURE 4. Horizontal Displacement of the Entire Data (testing data) 

 

As evident from Table 6, the TLS-RBFNN had a transformation accuracy of 0.6628 m while 

1.0362 m and 0.8652 m were respectively produced by TLS and RBFNN. In percentage wise, the 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

H
o

ri
zo

n
ta

l 
E

rr
o

r 
(m

et
re

)

Test Points

TLS RBFNN TLS-RBFNN



Ghana Journal of Science, Technology and Development  Kumi-Boateng and Ziggah, 2020 

53 
 

TLS and RBFNN transformation accuracies were improved by 37.34 and 20.24, respectively. 

These signify the degree at which the hybrid TLS-RBFNN model could improve the 

transformation results in the study area rather than independently applying TLS and RBFNN. 

Taking into account the average dispersion of horizontal errors (MHE), it can be seen that when 

TLS-RBFNN was applied the TLS and RBFNN results were improved by 38.52% and 23.36%. 

The maximum and minimum HE (Table 6), on the other hand, signify the quality of the results 

produced by the three methods with respect to the range of error achievable when TLS, RBFNN 

and TLS-RBFNN were applied in the study area. An observation from Table 6 shows that 

independently applying TLS and RBFNN in the study area will achieve maximum HE values of 

1.8909 m and 1.7638 m with 0.3393 m and 0.1969 m being the minimum. However, should the 

TLS-RBFNN be applied, TLS and RBFNN results could be improved by 28.93% and 16.22% for 

their maximum HE. In relation to minimum HE, 31.42% and 17.18% could be obtained. On 

account of the SD calculated values (Table 6), it could be seen that a transformation precision of 

0.3964 m was achieved by TLS-RBFNN while 0.4816 m and 0.4001 m were realised by TLS and 

RBFNN respectively. The TLS-RBFNN results indicate percentage improvement of TLS and 

RBFNN results by 8.52% and 0.37%. 

 

TABLE 6. Total Horizontal Residuals using the Entire data 

Performance 

Indicator 

TLS (m) RBFNN(m) TLS-RBFNN(m) 
Improvement 

for TLS (%) 

Improvement 

for RBFNN 

(%) 

RMSHE 1.0362 0.8652 0.6628 37.340 20.240 

MHE 0.9242 0.7726 0.539 38.520 23.360 

Max HE 1.8909 1.7638 1.6016 28.930 16.220 

Min HE 0.3393 0.1969 0.0251 31.420 17.180 

SD 0.4816 0.4001 0.3964 8.520 0.370 

NB: RMSHE, MHE, Max HE, Min HE and SD are defined in Equations (22) to (27) 

 

The computed BIC values (Table 7) based on the HE (Table 5) of the entire data set showed that 

the combination of TLS and RBFNN had a better capability of producing improved transformation 

results than when they are separately applied. This is because among the three methods TLS-

RBFNN had the least BIC value and thus was selected as the better technique over TLS and 

RBFNN, respectively. Hence, on the basis of the quantitative analyses presented in this study, it 

can logically be stated that the potential of the hybrid TLS-RBFNN approach in the coordinate 

transformation process for Ghana geodetic reference network has been duly investigated. 

 

TABLE 7. Bayesian Information Criterion Model Selection Using Whole Data 

Method K Parameter BIC Value 

TLS 7 12.6190 

RBFNN 2 -2.2856 

TLS-RBFNN 2 -12.4093 

 

CONCLUSIONS AND RECOMMENDATION 

This study has demonstrated the potential and resulting consequences of using the TLS integrated 

with RBFNN than applying the TLS and RBFNN independently in coordinate transformation 
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process. The proposed TLS-RBFNN has the ability to modify its behaviour to improve its learning 

ability and to generalise well to unseen data (test data). From the results, the obtained 

transformation accuracy (RMSHE) values for TLS and RBFNN were improved by TLS-RBFNN 

by 37.3% and 20.2%. Similar performance enhancement were observed for the transformation 

precision (SD values), maximum and minimum recorded horizontal errors as well as the average 

horizontal error (MHE). Future research works will focus on generalising the proposed hybrid 

approach across the entire country (Ghana) with more data availability upon completion of the 

GNSS reference stations in the near future. Additionally, it is also recommended that other 

artificial intelligence methods be applied with the TLS to help select the best performing hybrid 

transformation model for Ghana. 
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